

Spatial
Representation for Pragmatic Navigation

Susan L. Epstein
Department of Computer Science

Hunter College and The Graduate School of The City University of New York
New York, NY 10021 epstein@roz.hunter.cuny.edu

Abstract

As described here, pragmatic navigation attempts to
harness simple facts about a two-dimensional
environment to facilitate travel through it without an
explicit map. It relies upon predefined spatial
representations whose explicit instances are learned
during a sequence of trips through a fixed maze.
Once learned, any of these instances can be applied
to subsequent travel. Some of the representations are
heuristic, as are the procedures that employ them.
The resultant performance of an implementation,
particularly when contrasted with traditional AI
techniques, argues for path-finding guided by
representations like those detailed here.

1. The Task
People often find themselves without a map in a foreign
spatial region, such as a college campus or a small town,
where they are expected to make their way between many
different pairs of locations with increasing efficiency.
During a variety of trips through that region, they
construct not a detailed map but pragmatic representations

that simplify path-finding (Gryl 1994a; Gryl 1994b). It is
the thesis of this work that a robot can learn “its way
around” a region efficiently and effectively with a variety
of spatial representations instead of an explicit, detailed
map. This paper describes a cognitive and computational
model that supports successful, rapid robot navigation in
two-dimensional, partially-obstructed space.
 Consider a perceptually-impaired robot operating in a
grid with multiple internal obstructions, like that in Figure
1. The robot has no explicit, detailed map of its world,
and is not permitted to construct one. At any instant in
time, the state of the world is described to the robot only
as the dimensions of the maze, the coordinates of the goal,
the robot’s own coordinates, the path it has thus far
traversed, and how far the robot can “see” in four
directions to the nearest obstruction or to the goal. The
robot in Figure 1, for example, knows that it is in a 20 ×
20 maze, that there is a goal at (5, 14), that its own
location is (18, 6), that it has not yet moved, and that the
view is clear as far north as 17, as far south as 20, as far
east as 10, and as far west as 5. At each decision step the
robot selects a single direction and distance to move. The
robot of Figure 1 can choose only among the eight legal
moves crosshatched in the diagram. A problem for the
robot is represented as a pair (startR, startG), where startR
is the robot’s initial location and startG is the location of
some stationary goal it must reach in a sequence of no
more than n legal moves (the decision-step limit).. Such a
problem is solvable if and only if there exists some path
<loc0move1loc1…loci-1moveiloci…locp-1moveplocp>
where startR = loc0 and locp = startG, p ≤ n, and movei is
a legal move from loci-1 to loci through only
unobstructed locations, for i = 1, 2,…, p. The level of
difficulty of a solvable problem is the minimum value of p
for which there is a solution. The intent is to provide the
robot with a series of path-finding problems in the same
maze, with the expectation that its performance will
improve, both on problems it has encountered before and
on new ones. One further constraint: the robot may not
sense along the path as it travels, only at locations where
it stops to make the next decision.
 This was originally posed in an AI context as an
example of a particularly challenging search problem
(Korf 1990). The alternative approach described here is a
reactive learner that gradually acquires pragmatic
knowledge about the space, and then applies it to

12

R

1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

G

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 1: A path-finding problem. The robot must move to
the goal in unidirectional steps through unobstructed
locations. Its current legal moves are cross-hatched, and
one possible solution path is shown.

subsequent tasks. It originates from an architecture called
FORR.

2. FORR
FORR (FOrr the Right Reasons) is a problem-solving and
learning architecture intended to model the transition
from general expertise to specific expertise (Epstein
1994). A FORR-based system begins with a domain of
related problem classes, such as mazes, and some domain-
specific but problem-class-independent knowledge, such
as “avoid dead-ends.” With problem solving experience,
such as trips from one location to another, a FORR-based
program gradually acquires useful knowledge, potentially
applicable and probably correct data for a specific
problem class that should enhance its performance.
 FORR’s hierarchical reasoning process is shown in
Figure 2. FORR has tiers of Advisors, domain-specific but
problem-class-independent, decision-making rationales,
such as “get closer to your destination.” Each Advisor is a
“right reason,” implemented as a time-limited procedure.
Input to each Advisor is the current state of the world, the
current permissible actions from that state, and any
learned useful knowledge about the problem class under
consideration. Each Advisor outputs any number of
comments that support or discourage permissible actions.
A comment lists the Advisor’s name, the action
commented upon, and a strength, an integer from 0 to 10
that measures the intensity and direction of the Advisor’s

opinion. Although there are no constraints on the nature
of the comment-generating procedures themselves, FORR
is intended to be used with Advisors that eschew
extensive search.
 To select an action at any point, a FORR-based system
senses the current state of the world and forwards its
perceptions to a hierarchy of Advisors. Tier-1 Advisors
are consulted in a predetermined, fixed order. They may
have the authority to make a decision unilaterally or to
eliminate a legal action from any further consideration.
Tier-1 Advisors are reactive, consulted in sequence, and
reference only correct useful knowledge. Given the
current state of the world and what they know about the
problem class, any decision they make will be quick and
correct. For path-finding, a good tier-1 Advisor is “if you
see the goal, go to it.” If the first tier of a FORR-based
system fails to make a decision, control defaults to tier
1.5.
 Each tier-1.5 Advisor has its own reactive trigger, plus
a procedure that generates and tests a highly-constrained
set of possible solution fragments. A solution fragment
emerges from a tier-1.5 Advisor as a sequence of
decisions, rather than a single reactive one, a digression
from the “sense-compute-execute” loop. Tier-1.5 is
prioritized too, but lacks any guarantee of correctness. If
tier 1 has failed to make a decision, each tier-1.5 Advisor
has the opportunity in turn to trigger. The first to trigger is
immediately ceded control with limited time to generate
and test its fragments. For path-finding, a good tier-1.5
Advisor is “if you are aligned with the goal but there is an
intervening wall, go around it.” If a tier-1.5 Advisor
constructs what it believes to be a solution fragment, that
fragment is executed and then, regardless of the outcome,
control is returned to tier 1. If no tier-1.5 Advisor triggers
or produces a fragment, the decision is made in tier 2.
 Tier-2 Advisors are not necessarily independent, or
even correct in the full context of the state space. Each of
them epitomizes a heuristic, specialized view of reality
that can make a valid argument for or against one or more
actions. Tier-2 Advisors are reactive, but far less
trustworthy those of tier 1, because neither their reasoning
process nor the useful knowledge on which they rely is
guaranteed correct. For path finding, a good tier-2
Advisor is “move in the direction of the goal.” All of the
tier-2 Advisors have an opportunity to comment before
any decision is made. The decision they compute by
tallying their comment strengths represents a consensus of
opinion.

3. Learning pragmatic navigation knowledge
Pragmatic navigation knowledge is useful knowledge for
a specific maze. It is learned from experience and, despite
possible inaccuracies, is generally expected to enhance
performance. Each kind of pragmatic navigation
knowledge is prespecified, including its learning
algorithm, learning time limit, and schedule (after a

Voting

current state
acquired useful knowledge

legal
actions

A1

Ak

yes

no

Tier 1:
Shallow search and
inference from
perfect knowledge

execute
decision

Ak+1

Am

yes

no

Tier 1.5:
Deeper search and
inference triggered
by situation
recognition

Am+ 1 Am+ 2 An…

Decision?

Tier 2:
Heuristic opinions

Decision?

Figure 2: How FORR makes decisions.

decision, a task, or a set of tasks). Pragmatic navigation
knowledge may also be learned during a decision, when
the robot has recently been constrained, i.e., when any of
the following is true:
• The area of the territory bounded by the last x% of the
moves was less than y% of the total maze area.
• All the legal moves have been visited at least once.
• The last x% of the moves was less than y% of the
possible maze locations.
• Half the recent moves were to locations visited at least

once before.
The work reported upon here used x = 30% and y = 10%.
 Figure 3 provides examples of pragmatic navigation
knowledge for the maze of Figure 1, as implemented in a
program called Ariadne. (Ariadne, daughter of King
Minos, helped Theseus find his way through the
labyrinth.)
 From the dimensions of the maze, the robot can
identify quadrants. A gate is a location that offers a transi-
tion from

 Quadrant 2 Quadrant 1

corridor

chamber

access

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

dead-end

gate

A

R

bottle

neck

G

base

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

quadrant

 Quadrant 3 Quadrant 4

Figure 3: Some examples of pragmatic navigation knowledge.

one quadrant of the maze to another. After each move,
Ariadne tests whether its quadrant has changed, that is, if it
has moved through a gate. If so, the robot’s current location
is learned during problem solving as a gate between the
current quadrant and the previous one. A gate may not al-
ways be helpful; for example, (11, 3) is a gate between
quadrants 3 and 2 in Figure 3, but it offers access to little of
quadrant 2. Each gate is stored with its extent (rectangular
approximation of the locations to which it affords access,
computed as the view from the current location after passing
though the gate) in a hash table whose key is the sorted pair
of quadrant numbers. If the robot moves from (11, 3) to
(10, 3), the extent of the gate at (11, 3) is computed from
(10, 3) as 9 north, 4 east, 17 south, and 3 west.
 A corridor is a passageway of width one that either leads
nowhere (a dead-end) or is a hallway. In Figure 3, {(14, 1),
(15, 1), (16, 1)} is a dead-end and {(5, 15), (5, 16), (6, 16),
(6, 17)} is a hallway that zigzags. A corridor is learned
when, from the current state, the robot has only one or two
moves. Only the endpoints of a corridor are recorded; each
serves as the key to a hash table whose returned values are
the other endpoint and whether or not it is a dead-end.
Corridors are enlarged and merged together as necessary.

 A chamber is an irregularly shaped space with an access
point and an approximate extent that at worst overstates the
chamber by a bounding rectangle. The access point of a
chamber is any location within the chamber that affords a
view beyond it. Figure 3’s robot is in a chamber with access
point (16, 5) and extent 16 north, 10 east, 20 south, and 4
west; from (16, 5) the robot can see west beyond its extent
to (16, 3). All locations reachable from the robot really
constitute one large chamber, but the chambers that Ariadne
learns are more limited and room-like. A chamber is learned
during problem solving when the task has been underway
for some time, the robot has been recently constrained and
has been in its current location before, there are very few
legal moves to locations not yet visited on this trip, and the
current location was not the result of a tier-1.5 fragment.
The learning algorithm for a chamber estimates the extent
according to its current percepts, and then tries to move the
robot to locations where the chamber appears higher and
wider. From its current location the robot scans once
horizontally, and then from the scanned location offering the
largest view scans once again vertically. (If there are no
horizontally-adjacent legal locations, the vertical scan is
performed first.) If the procedure identifies a sequence of

one or two locations that enlarge the extent, at least one of
which is previously unvisited during this trip, it records the
chamber’s extent and access point (the second location if
there were two, otherwise the first) on a list. In Figure 3, for
example, the horizontal scan from (18, 6) enlarges the
northern view at (18, 5), and then the vertical scan finds the
access point (16, 5). A new chamber may subsume an old
one, in which case it replaces it on the list. Otherwise,
chambers are not merged, and they may overlap or have
more than one access point.
 A bottle is another useful knowledge description of a
constrained space, learned after problem solving from

analysis of the entire path after a trip is completed. A
potential bottle begins with a location that was visited more
than once. The bottle is repeatedly extended in both
directions along the path by immediately neighboring
positions only if it includes several spots, is not corridor-
like, and does not ultimately encompass more than x% of
the area of the maze. Once a bottle is identified and its
extent (the outer boundaries of the locations it includes)
computed, its neck (entry and/or exit point) is identified.
Bottles are stored in a hash table as an extent and a neck.
Figure 3 shows a bottle with extent 13 north, 19 east, 14
south, and 18 west and neck (15, 19).

Table 1: Ariadne Advisors that do not apply useful knowledge. Those that do apply it are detailed in the text.

Tier Advisor Rationale
1 Victory If the goal is reachable by a legal move, go there.
1.5 Probe Determine the current extent and try to leave it.
1.5 Other Side Move the robot to the opposite side of the goal.

2 Adventure Move to thus far unvisited locations, preferably toward the goal.
2 Been There Discourage returning to a location already visited on this trip.
2 Contract Take large steps when far from the goal, and small steps when close to it.
2 Cycle Breaker Stop repeated visits to the same few spots.
2 Done That Discourage moving in the same direction as before from a previously-visited location.
2 Giant Step If recently confined, take a long step, preferably toward the goal.
2 Goal Column Align the robot horizontally with the goal, if it is not already.
2 Goal Row Align the robot vertically with the goal, if it is not already.
2 Mr. Rogers Move into the neighborhood of the goal.
2 Plod Take a one-unit step, preferably toward the goal.

 A base is a location in the maze that appears to have
beena key to a successful path. In the author’s home town
people regularly give directions beginning “first you go to
the Claremont Diner.” Although it served memorable
cheesecake, the Claremont Diner burned down 15 years ago,
and there is nothing particularly significant about the car
dealership that has replaced it. What is significant is that the
diner was at a location that affords ready (not necessarily
shortest-path) access to other locations within a 10-mile
radius. A base is such a location. Bases are learned after
problem solving from analysis of a successful path that has
been corrected to eliminate loops and unnecessary
digressions. A base is an extreme location in that corrected
path that was not in the heading from the robot to the goal,
in other words, a counterintuitive move. For example, in
Figure 1 the move on the solution path from (18, 6) to
(18, 5) is away from the goal, so (18, 5) would be learned as
a base. A base is not a dead-end or startG itself, and solution
fragments constructed during search to circumvent an
obstruction aligned with the goal contribute only their most
extreme positions opposite the original headings. Bases are
stored on a list.
 Two other items of useful knowledge are learned
automatically by FORR after problem solving and have no
particular spatial significance: average task length in
decisions steps and openings, previously successful path
beginnings.

 Pragmatic navigation knowledge is heuristic. No data is
guaranteed to be correct, or applicable to any other problem.
The learning algorithm for any item may reference useful
knowledge or the ideas behind it to distinguish among kinds
of items. For example, gates are not dead-ends. For the most
part, however, one location might participate in several
kinds of items, and thereby be considered by a variety of
Advisors, without constraint. This means that, for example,
a gate may also be a base or the neck of a bottle.

4. Applying pragmatic navigation knowledge
Ariadne applies acquired pragmatic navigation knowledge
about a particular maze to solve problems in it. Each of its
Advisors is a narrow decision-making rationale designed for
path finding in general, rather than for some particular
maze. Those Advisors that apply no pragmatic navigation
knowledge are summarized in Table 1; further details are
available on them in (Epstein 1995).
 Tier 1 Advisors are perfectly correct, reactive procedures
that decide quickly and mandate a single move. No Way is
the only tier-1 Advisor in Ariadne that applies pragmatic
navigation knowledge. It checks each legal move to see if it
resides in the extent of a dead-end that could not contain the
goal. (Recall that the extent is a bounding rectangle, so this
is a conservative approach.) If so, No Way eliminates the
move from further consideration, unless the robot is already

in the dead-end (and therefore needs to get out).
 Tier 1.5 Advisors are heuristics that do time-limited
search in an attempt to produce a sequence of moves that
they then mandate. (These Advisors simulate human,
situation-based behavior (Klein & Calderwood 1991).) Each
is defined by its trigger, which signals its applicability, and
its search method. Ariadne has three that apply useful
knowledge: Outta Here, Roundabout, Wander, and Super
Quadro.
 Outta Here attempts to leave a confined space that does
not contain the goal. It triggers when the trip is well
underway and either the robot’s recent locations cover a
relatively small fraction of the total area of the maze, or it
believes itself to be in a dead-end or chamber not containing
the goal. If the robot is in a dead-end, Outta Here marches

out with a sequence of steps that lead to its open end. If the
robot is in a chamber, Outta Here scans the way the
chamber-learning routine does (and may learn a chamber as
a side effect) before it returns a sequence of up to three steps
that move the robot out through the access point of the
chamber. If Outta Here were to trigger in Figure 3 when the
robot was at (18, 6), it would generate the path (18, 5) →
(16, 5) → (16, 3). Outta Here is not guaranteed to find an
access point, and may return the robot to a location it has
already visited.
 Roundabout attempts to circumnavigate a wall between
the robot and the goal. It triggers when the robot is aligned
with the goal, either horizontally or vertically. This is not a
traditional wall-following algorithm; it establishes a primary

R

1

2

3

4

5

6

7

8

9

10

G

1 2 3 4 5 6 7 8 9 10

R

1

2

3

4

5

6

7

8

9

10

G

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

corridor

base

dead-end

obstruction

gate

 (a) (b) (c)

Figure 4: In one maze, (a) a solution path, (b) a simple decision situation, and (c) pragmatic navigation knowledge.

direction (toward the goal) and a secondary direction
(orthogonal to the primary). Avoiding dead-ends, search
repeatedly moves in the primary direction when possible,
otherwise in the secondary direction until the goal is in view
or backup (permitted opposite to the primary and secondary
directions) would exceed the original alignment coordinates.
While time permits, if this search fails to produce a solution
fragment, the algorithm will iterate after shifting the robot
one or more steps in either secondary direction. Roundabout
will proffer the first path that gets closer to the goal, even if
it is not in sight at the end. In Figure 1 the portion of the
solution from (5, 10) to (5, 13) was mandated by
Roundabout.
 Wander attempts to find an L-shaped path that leads it to
a new location, one as far from the robot’s current location
as possible. It triggers only when the robot’s behavior is
judged constrained and repetitive, and the current location
was not just the result of a solution fragment. Wandering
becomes less likely as more bases are identified; its trigger
is stochastic, with probability

1 –
bases

.1unobstructed maze locations

.

 Super Quadro attempts to change the robot’s quadrant. It
triggers when the trip is well underway and the robot has
been in its current quadrant (or its current quadrant and the

goal’s quadrant) for some time. Super Quadro scans to find
a move into the extent of a gate that would change the
robot’s quadrant. It tries to find a sequence of orthogonal
steps to a location whose quadrant is different, preferably
the goal quadrant if it has not been there recently. From
(18, 5) in Figure 3, depending upon its recent experience,
Super Quadro could generate the path (16, 5) → (16, 3) →
(10, 3) into the extent of, and through, the (11, 3) gate.
Super Quadro has no heuristics for preferring one gate to
another, so its solution fragment may not always be
constructive.
 Tier-2 Advisors are reactive, time-limited heuristics that
embody path-finding commonsense and do no forward
search in the maze. Each may recommend or oppose any
number of legal moves that have not already been
eliminated by No Way. Although every tier-2 Advisor
captures a reasonable rationale for navigation, none should
be trusted to decide alone. All 17 vote together. The simple
ideas behind them support rapid computation; given 10
seconds, none of Ariadne’s tier-2 Advisors has yet run out
of time.
 Opening encourages the reuse of previously successful
path beginnings. Even if the goal is in a different location,
its heuristic may work well if the old path was successful
because it began by moving to an area that offered good
access to other parts of the maze. Chamberlain discourages

a move into the extent of a chamber if the goal is not there,
and encourages such a move if the goal might be there. If

the robot is already in a chamber where the goal is not,

Table 2: Tier 2 votes on Figure 4(a).

Move Comments Score
(3, 8) Giant Step 8, Adventure 6 4
(4, 8) Giant Step 8, Adventure 6 4
(5, 8) Adventure 6, Plod 6 2
(6, 3) Home Run 10, Giant Step 10 10
(6, 4) Home Run 8, Mr. Rogers 6, Giant Step 10, Adventure 8 12
(6, 5) Home Run 8, Mr. Rogers 7, Giant Step 10, Adventure 8 13
(6, 6) Home Run 8, Mr. Rogers 8, Giant Step 10, Adventure 8, Goal Column 10 19
(6, 7) Mr. Rogers 7, Adventure 8, Plod 8 8
(7, 8) Mr. Rogers 9, Been There 4, Plod 8 6
(8, 8) Mr. Rogers 10, Giant Step 10, Been There 4 9
Chamberlain encourages moving to an access point (to
support a subsequent exit). Cork is the bottle version of
Chamberlain. When the robot is outside the bottle, it
discourages moves into the neck of a bottle whose extent
indicates that it cannot contain the goal, and encourages
moves into the neck of a bottle whose extent indicates that it
can contain the goal. When the robot is inside the bottle,
Cork reverses this advice. Quadro is a simplistic version of
Super Quadro. It encourages, with decreasing strengths,
moves to known gates into the goal’s quadrant, moves into
the extent of a known gate into the goal’s quadrant, moves
to known gates into another quadrant, and moves into the
extent of a known gate into another quadrant. Home Run
encourages moves to bases and, with lesser strengths, moves
to locations near bases. Leap Frog constructs high-level
plans as a result of bidirectional search on aligned bases, as
if there were no obstructions, and supports moves to the
bases in its plans. Late in a trip (as measured by the average
task length), Hurry proportionately encourages the moves
with the five longest steps.
 Figure 4(a) shows Ariadne’s somewhat torturous solution
to a level 4 problem during learning in a scaled-down maze.
Ariadne starts out well, but when unable to move south or
west toward the goal from (8, 8), it goes to (6, 8). The
decision situation at (6, 8) is detailed in Figure 4(b). At this
point, tiers 1 and 1.5 have already waived their right to
decide on the next move, and (6, 3) is a learned base from a
previous trip. Ariadne’s actual comments appear in Table 2,
where the total score for a move is computed by converting
the comment strength range from [0, 10] to [–5, 5] and then
adding the strengths. The move to (6, 6) will be selected
because it is near a base, it gets closer to the goal than some
of the other moves, it is a relatively long step, it has not yet
been visited on this trip, and it is in the goal column. Once
Ariadne moves to (6, 6), Roundabout computes a fragment
that puts the robot in sight of the goal, and the trip ends as
Victory moves there.
 Because of this trip, (8, 9) is learned as a base. The
problem generator’s solution to Figure 4(a) is

 (7, 7) → (7, 9) → (10, 9) → (10, 6) → (9, 6).
Figure 4(a) was Ariadne’s fourth learning trip in this

particular maze, and it had not yet encountered (8, 9) as a
base. The next time Ariadne solves the same problem, it
recognizes (8, 9) as a base, moves there from (8, 8), then
goes to (9, 9), starts Roundabout, and ultimately produce a
solution as short as the generator’s path but in smaller steps
(and therefore more decisions). Figure 4(c) shows Ariadne’s
useful knowledge about this maze after 10 level-4 learning
problems in it.

5. Experimental design and results
Ariadne’s performance is evaluated in a series of runs. A
run for a fixed, randomly-generated maze consists of 10
learning problems given to a program, followed by 10
testing problems with learning turned off. A problem of
either kind is terminated when the agent reaches the goal or
when it has made 100 decisions. Because Ariadne is non-
deterministic, results from 5 runs are averaged to produce an
experiment. Experiments were performed for problems with
levels of difficulty 6, 8, 10, and 12 in 20 × 20 mazes that
were 30% obstructed internally. Effectively, the level of
difficulty of a problem is the minimum number of (left or
right) turns the robot must make to reach the goal.
 Performance during testing is evaluated in a variety of
ways: the number of test problems solved within the
decision-step limit n (solutions), the Manhattan distance of a
successful solution path (path length), elapsed time per trip
in seconds on a Sun Sparc10 (speed), and the percentage of
solutions that are at least as short as the one anticipated by
the problem generator (power).
 Ariadne solves about 94% of all problems below level 12
in less than 100 decision steps. Speedup-learning is
measured by reusing learning problems during testing. In
recent testing on problems at levels 6, 8, 10, and 12, a non-
parametric sign test showed that speedup paths are
significantly shorter at the 95% confidence level. Ariadne
solved 76% of level 12 problems on the first pass, and 86%
when it resolved them with access to useful knowledge but
with further learning turned off. On newly-generated testing
problems, Ariadne solves some with learned pragmatic
navigation knowledge that it cannot solve without it. With

learned pragmatic knowledge, it also constructs more
solutions at least as good as the problem generator’s than
those constructed without pragmatic navigation knowledge
and does so in less time, again at the 95% confidence level.

6. Discussion
In a sufficiently large and complex maze, people and many
standard search techniques find these problems extremely
difficult. The branching factor is large when there is enough
obstruction to make the goal hard to see, but not too much,
so that there are many choices at each decision point.
Typical AI search strategies will explore most of the nodes,
revisiting some of them many times. The robot’s knowledge
is so limited that search dependent upon an ordinary
evaluation function is difficult to construct. For example,
closer to the goal is not necessarily better; there may be a
very long wall there. Best-first search, with Euclidean
distance as its evaluation function, solves only 70% of level
10 problems [Pazzani, personal communication]. Depth-first
search requires fairly elaborate backtracking and loop
prevention; very few problems would be solvable with
depth-first search under the n = 100 step limit imposed here.
Breadth-first search, while it will always solve the problem,
does so at the cost of visiting a high proportion of nodes in
the search space and maintaining a very large structure for
open paths. Indeed, the data indicate that explicit, breadth-
first search in these mazes is nearly exhaustive (96.2%) for
level-12 problems. Means-ends analysis is not possible
because the robot knows little, if anything at all, about the
immediate vicinity of the goal. For a very large maze, then,
explicit search with a map would be extremely inefficient,
perhaps intractable.
 The thoughtful approach is to learn something about the
maze on repeated trips through it. Branting and Aha recently
suggested a case-based planning method for the grid world
that operated in a set of abstraction spaces and stored both
detailed and abstracted solution paths (Branting & Aha
1995). Their mazes, although larger than those tested here,
are less complex, since they assume that obstructions are
rectangular objects. Such a maze is unlikely to present many
dead-ends, narrow-necked chambers or bottles, or effective
barriers between large regions. We would expect Ariadne to
perform quite well without learning in those mazes.
Alternatively, a variety of reinforcement learning techniques
have sought convergence to an optimal path through
repeated solution of a single problem, and obtained it after
hundreds of thousands of repetitions [Moore and Atkeson,
1993; Sutton, 1990]. In contrast, Ariadne has no mechanism
that would guarantee optimality, and will quickly settle
upon the same route in most cases.
 Pragmatic navigation proves to be a robust alternative. A
single of item of pragmatic navigation knowledge can be
applied differently by different Advisors, even within the
same tier. For example, bases were conceived of as
touchstones, intended for Home Run as a way to guide a
single reactive decision. When simple planning was

implemented in Leap Frog, bases were harnessed for that as
well.
 The application of pragmatic navigation knowledge,
however, benefits from an empirical component. Leap Frog,
for example, assumes orthogonally-aligned bases will have
no intervening obstructions, and then builds a set of plans
bridging the gap between startR and startG with a sequence
of bases. Initially it was unclear whether these plans should
be high-level (take the most distant aligned base from the
search node) or low-level (take the nearest aligned base to
the search node). During testing, low-level plans were
clearly superior.
 Although Ariadne draws no explicit map, one might fear
that the amount of useful knowledge would eventually
approach the amount required for a map. This does not
appear to be the case. Apart from gates, there is no
connectivity knowledge in pragmatic navigation. (In Figure
4(a) with 70 locations, however, there are 174 adjacencies.)
In a particular maze there are not so many corridors,
chambers, bottles, and gates to be discovered. Bases, which
we believe to be Ariadne’s most powerful item of useful
knowledge, are a form of distinguished location. Although
they may cluster together, bases tend to repeat, both because
of maze topology and because they are learned from new
solutions, which rely on old bases. Travel in a difficult
problem almost always entails visits to both bases and non-
bases, but to date bases have never exceeded 21% of the
reachable locations, even after repeated learning in the same
maze.
 Based on preliminary empirical evidence, there is every
reason to believe that Ariadne will scale up, i.e., that it will
continue to perform well in much larger and more tortuous
mazes than these. Hoyle, a FORR-based game-learning
program, progressed from expertise in spaces with several
thousand nodes to spaces with several billion nodes after the
addition of only a few tier-2 Advisors (Epstein 1992).
Ariadne has already performed well on preliminary tests in
30 × 30 mazes and continues to improve as we refine its
Advisors and its learning algorithms.
 Even if one could identify all the relevant useful
knowledge for pragmatic navigation, there is no obvious
way to integrate it properly. For example, it is our intuition
that bases are much more helpful than chambers, so that
when they disagree, the comments of Leap Frog and Home
Run should be valued more than those of Chamberlain. In
some mazes, however, the relative significance of Advisors
differs because the topology of the maze makes one
approach consistently (on a variety of problems) more
successful than another. AWL is an algorithm that learns
weights for second-tier Advisors [Epstein, 1994b]. It was
devised to exploit empirical evidence that the accuracy of
second-tier Advisors varies with the problem class. AWL
learns weights to apply to comment strengths, so that voting
results from Hoyle’s Advisors match the way Hoyle’s
external exponent played, i.e., AWL fits Hoyle to the expert.
In Ariadne, of course, there is no external expert, but there
are procedures that smooth and eliminate repetitions from
successful paths after a trip is over, without search. We are

now testing AWL to fit Ariadne’s voting to these improved
paths, and expect improvement.
 This work has several similarities to the way people
describe routes in urban and suburban Paris (Gryl 1994a;
Gryl 1994b; Ligozat 1992). In particular, the data indicate
that when people select routes they do not change direction
a lot, move initially toward their goal, prefer main axes, and
tend to avoid neighborhoods with limited access. Ariadne
does not change direction a lot, either, because it has
Advisors like Giant Step and Hurry with a propensity for
long, one-directional steps. Plod, Mr. Rogers, and Giant
Step all move the robot toward the goal, too, particularly
early in a trip. Cork and Chamberlain deal in a human-like
manner with the constricted neighborhoods of bottles and
chambers. Finally, Ariadne’s “vision” in only four
directions permits only movement along the north-south and
east-west axes.
 Ariadne is ongoing work. There are still many proposed
Advisors and items of useful knowledge on the drawing
board. More elaborate planning is a central focus, as is a
variety of training methods. Meanwhile the program’s
efficient and successful performance argues for navigation
based on spatial representation of useful knowledge rather
than detailed maps.

Acknowledgments
This work was supported in part by NSF#9423085. The
author thanks Jack Gelfand, Glenn Iba, and Michael Pazzani
for their thoughtful discussions.

References
Branting, L. K. & Aha, D. W. 1995. Stratified Case-Based
Reasoning: Reusing Hierarchical Problem Solving
Episodes. In Proceedings of the 14th International Joint
Conference on Artificial Intelligence, 384-390. Montreal:
Morgan Kaufmann.

Epstein, S. L. 1992. Prior Knowledge Strengthens Learning
to Control Search in Weak Theory Domains. International
Journal of Intelligent Systems, 7 : 547-586.

Epstein, S. L. 1994. For the Right Reasons: The FORR
Architecture for Learning in a Skill Domain. Cognitive
Science, 18 (3): 479-511.

Epstein, S. L. 1995. On Heuristic Reasoning, Reactivity,
and Search. In Proceedings of the 14th International Joint
Conference on Artificial Intelligence, 454-461. Montreal:
Morgan Kaufmann.

Gryl, A. 1994a. Analyse cognitive des descriptions
d’itinéraires. In Proceedings of the Premier Colloque Jeunes
Chercheurs en Sciences Cognitives, La Motte d’Aveillans,
France:

Gryl, A. 1994b. Opérations cognitives mises en oeuvre dans
la description d’itinéraires, Mémoire de DEA, Paris IX,
Orsay.

Klein, G. A. & Calderwood, R. 1991. Decision Models:
Some Lessons from the Field. IEEE Transactions on
Systems, Man, and Cybernetics, 21 (5): 1018-1026.

Korf, R. E. 1990. Real-Time Heuristic Search. Artificial
Intelligence, 42 (2-3): 189-211.

Ligozat, G. 1992. Strategies for Route Description: an
Interdisciplinary Approach. In Proceedings of the ECAI 92
Workshop W19, Spatial Concepts: Connecting Cognitive
Theories with Formal Representations, Vienna:

