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Abstract 

As described here, pragmatic navigation attempts to 
harness simple facts about a two-dimensional 
environment to facilitate travel through it without an 
explicit map. It relies upon predefined spatial 
representations whose explicit instances are learned 
during a sequence of trips through a fixed maze. 
Once learned, any of these instances can be applied 
to subsequent travel. Some of the representations are 
heuristic, as are the procedures that employ them. 
The resultant performance of an implementation, 
particularly when contrasted with traditional AI 
techniques, argues for path-finding guided by 
representations like those detailed here. 

1. The Task 
People often find themselves without a map in a foreign 
spatial region, such as a college campus or a small town, 
where they are expected to make their way between many 
different pairs of locations with increasing efficiency. 
During a variety of trips through that region, they 
construct not a detailed map but pragmatic representations 

that simplify path-finding (Gryl 1994a; Gryl 1994b). It is 
the thesis of this work that a robot can learn “its way 
around” a region efficiently and effectively with a variety 
of spatial representations instead of an explicit, detailed 
map. This paper describes a cognitive and computational 
model that supports successful, rapid robot navigation in 
two-dimensional, partially-obstructed space.  
 Consider a perceptually-impaired robot operating in a 
grid with multiple internal obstructions, like that in Figure 
1. The robot has no explicit, detailed map of its world, 
and is not permitted to construct one. At any instant in 
time, the state of the world is described to the robot only 
as the dimensions of the maze, the coordinates of the goal, 
the robot’s own coordinates, the path it has thus far 
traversed, and how far the robot can “see” in four 
directions to the nearest obstruction or to the goal. The 
robot in Figure 1, for example, knows that it is in a 20 × 
20 maze, that there is a goal at (5, 14), that its own 
location is (18, 6), that it has not yet moved, and that the 
view is clear as far north as 17, as far south as 20, as far 
east as 10, and as far west as 5. At each decision step the 
robot selects a single direction and distance to move. The 
robot of Figure 1 can choose only among the eight legal 
moves crosshatched in the diagram. A problem for the 
robot is represented as a pair (startR, startG), where startR 
is the robot’s initial location and startG is the location of 
some stationary goal it must reach in a sequence of no 
more than n legal moves (the decision-step limit).. Such a 
problem is solvable if and only if there exists some path 
<loc0move1loc1…loci-1moveiloci…locp-1moveplocp> 
where startR = loc0 and locp = startG, p ≤ n, and movei is 
a legal move from loci-1 to loci through only 
unobstructed locations, for i = 1, 2,…, p. The level of 
difficulty of a solvable problem is the minimum value of p 
for which there is a solution. The intent is to provide the 
robot with a series of path-finding problems in the same 
maze, with the expectation that its performance will 
improve, both on problems it has encountered before and 
on new ones. One further constraint: the robot may not 
sense along the path as it travels, only at locations where 
it stops to make the next decision. 
 This was originally posed in an AI context as an 
example of a particularly challenging search problem 
(Korf 1990). The alternative approach described here is a 
reactive learner that gradually acquires pragmatic 
knowledge about the space, and then applies it to 
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Figure 1: A path-finding problem. The robot must move to 
the goal in unidirectional steps through unobstructed 
locations. Its current legal moves are cross-hatched, and 
one possible solution path is shown. 



 
subsequent tasks. It originates from an architecture called 
FORR. 

2. FORR 
FORR (FOrr the Right Reasons) is a problem-solving and 
learning architecture intended to model the transition 
from general expertise to specific expertise (Epstein 
1994). A FORR-based system begins with a domain of 
related problem classes, such as mazes, and some domain-
specific but problem-class-independent knowledge, such 
as “avoid dead-ends.” With problem solving experience, 
such as trips from one location to another, a FORR-based 
program gradually acquires useful knowledge, potentially 
applicable and probably correct data for a specific 
problem class that should enhance its performance.  
 FORR’s hierarchical reasoning process is shown in 
Figure 2. FORR has tiers of Advisors, domain-specific but 
problem-class-independent, decision-making rationales, 
such as “get closer to your destination.” Each Advisor is a 
“right reason,” implemented as a time-limited procedure. 
Input to each Advisor is the current state of the world, the 
current permissible actions from that state, and any 
learned useful knowledge about the problem class under 
consideration. Each Advisor outputs any number of 
comments that support or discourage permissible actions. 
A comment lists the Advisor’s name, the action 
commented upon, and a strength, an integer from 0 to 10 
that measures the intensity and direction of the Advisor’s 

opinion. Although there are no constraints on the nature 
of the comment-generating procedures themselves, FORR 
is intended to be used with Advisors that eschew 
extensive search. 
 To select an action at any point, a FORR-based system 
senses the current state of the world and forwards its 
perceptions to a hierarchy of Advisors. Tier-1 Advisors 
are consulted in a predetermined, fixed order. They may 
have the authority to make a decision unilaterally or to 
eliminate a legal action from any further consideration. 
Tier-1 Advisors are reactive, consulted in sequence, and 
reference only correct useful knowledge. Given the 
current state of the world and what they know about the 
problem class, any decision they make will be quick and 
correct. For path-finding, a good tier-1 Advisor is “if you 
see the goal, go to it.” If the first tier of a FORR-based 
system fails to make a decision, control defaults to tier 
1.5.  
 Each tier-1.5 Advisor has its own reactive trigger, plus 
a procedure that generates and tests a highly-constrained 
set of possible solution fragments. A solution fragment 
emerges from a tier-1.5 Advisor as a sequence of 
decisions, rather than a single reactive one, a digression 
from the “sense-compute-execute” loop. Tier-1.5 is 
prioritized too, but lacks any guarantee of correctness. If 
tier 1 has failed to make a decision, each tier-1.5 Advisor 
has the opportunity in turn to trigger. The first to trigger is 
immediately ceded control with limited time to generate 
and test its fragments. For path-finding, a good tier-1.5 
Advisor is “if you are aligned with the goal but there is an 
intervening wall, go around it.” If a tier-1.5 Advisor 
constructs what it believes to be a solution fragment, that 
fragment is executed and then, regardless of the outcome, 
control is returned to tier 1. If no tier-1.5 Advisor triggers 
or produces a fragment, the decision is made in tier 2. 
 Tier-2 Advisors are not necessarily independent, or 
even correct in the full context of the state space. Each of 
them epitomizes a heuristic, specialized view of reality 
that can make a valid argument for or against one or more 
actions. Tier-2 Advisors are reactive, but far less 
trustworthy those of tier 1, because neither their reasoning 
process nor the useful knowledge on which they rely is 
guaranteed correct. For path finding, a good tier-2 
Advisor is “move in the direction of the goal.” All of the 
tier-2 Advisors have an opportunity to comment before 
any decision is made. The decision they compute by 
tallying their comment strengths represents a consensus of 
opinion.  

3. Learning pragmatic navigation knowledge 
Pragmatic navigation knowledge is useful knowledge for 
a specific maze. It is learned from experience and, despite 
possible inaccuracies, is generally expected to enhance 
performance. Each kind of pragmatic navigation 
knowledge is prespecified, including its learning 
algorithm, learning time limit, and schedule (after a 
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Figure 2: How FORR makes decisions. 



 
decision, a task, or a set of tasks). Pragmatic navigation 
knowledge may also be learned during a decision, when 
the robot has recently been constrained, i.e., when any of 
the following is true:  
• The area of the territory bounded by the last x% of the 
moves was less than y% of the total maze area. 
• All the legal moves have been visited at least once. 
• The last x% of the moves was less than y% of the 
possible maze locations. 
• Half the recent moves were to locations visited at least 

once before.  
The work reported upon here used x = 30% and y = 10%. 
 Figure 3 provides examples of pragmatic navigation 
knowledge for the maze of Figure 1, as implemented in a 
program called Ariadne. (Ariadne, daughter of King 
Minos, helped Theseus find his way through the 
labyrinth.) 
 From the dimensions of the maze, the robot can 
identify quadrants. A gate is a location that offers a transi-
tion from
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Figure 3: Some examples of pragmatic navigation knowledge. 

one quadrant of the maze to another. After each move, 
Ariadne tests whether its quadrant has changed, that is, if it 
has moved through a gate. If so, the robot’s current location 
is learned during problem solving as a gate between the 
current quadrant and the previous one. A gate may not al-
ways be helpful; for example, (11, 3) is a gate between 
quadrants 3 and 2 in Figure 3, but it offers access to little of 
quadrant 2. Each gate is stored with its extent (rectangular 
approximation of the locations to which it affords access, 
computed as the view from the current location after passing 
though the gate) in a hash table whose key is the sorted pair 
of quadrant numbers. If the robot moves from (11, 3) to 
(10, 3), the extent of the gate at (11, 3) is computed from 
(10, 3) as 9 north, 4 east, 17 south, and 3 west. 
 A corridor is a passageway of width one that either leads 
nowhere (a dead-end) or is a hallway. In Figure 3, {(14, 1), 
(15, 1), (16, 1)} is a dead-end and {(5, 15), (5, 16), (6, 16), 
(6, 17)} is a hallway that zigzags. A corridor is learned 
when, from the current state, the robot has only one or two 
moves. Only the endpoints of a corridor are recorded; each 
serves as the key to a hash table whose returned values are 
the other endpoint and whether or not it is a dead-end. 
Corridors are enlarged and merged together as necessary.  

 A chamber is an irregularly shaped space with an access 
point and an approximate extent that at worst overstates the 
chamber by a bounding rectangle. The access point of a 
chamber is any location within the chamber that affords a 
view beyond it. Figure 3’s robot is in a chamber with access 
point (16, 5) and extent 16 north, 10 east, 20 south, and 4 
west; from (16, 5) the robot can see west beyond its extent 
to (16, 3). All locations reachable from the robot really 
constitute one large chamber, but the chambers that Ariadne 
learns are more limited and room-like. A chamber is learned 
during problem solving when the task has been underway 
for some time, the robot has been recently constrained and 
has been in its current location before, there are very few 
legal moves to locations not yet visited on this trip, and the 
current location was not the result of a tier-1.5 fragment. 
The learning algorithm for a chamber estimates the extent 
according to its current percepts, and then tries to move the 
robot to locations where the chamber appears higher and 
wider. From its current location the robot scans once 
horizontally, and then from the scanned location offering the 
largest view scans once again vertically. (If there are no 
horizontally-adjacent legal locations, the vertical scan is 
performed first.) If the procedure identifies a sequence of 



 
one or two locations that enlarge the extent, at least one of 
which is previously unvisited during this trip, it records the 
chamber’s extent and access point (the second location if 
there were two, otherwise the first) on a list. In Figure 3, for 
example, the horizontal scan from (18, 6) enlarges the 
northern view at (18, 5), and then the vertical scan finds the 
access point (16, 5). A new chamber may subsume an old 
one, in which case it replaces it on the list. Otherwise, 
chambers are not merged, and they may overlap or have 
more than one access point. 
 A bottle is another useful knowledge description of a 
constrained space, learned after problem solving from 

analysis of the entire path after a trip is completed. A 
potential bottle begins with a location that was visited more 
than once. The bottle is repeatedly extended in both 
directions along the path by immediately neighboring 
positions only if it includes several spots, is not corridor-
like, and does not ultimately encompass more than x% of 
the area of the maze. Once a bottle is identified and its 
extent (the outer boundaries of the locations it includes) 
computed, its neck (entry and/or exit point) is identified. 
Bottles are stored in a hash table as an extent and a neck. 
Figure 3 shows a bottle with extent 13 north, 19 east, 14 
south, and 18 west and neck (15, 19). 

Table 1: Ariadne Advisors that do not apply useful knowledge. Those that do apply it are detailed in the text. 
 
Tier Advisor Rationale 
1 Victory If the goal is reachable by a legal move, go there.  
1.5 Probe Determine the current extent and try to leave it. 
1.5 Other Side Move the robot to the opposite side of the goal.  

 
2 Adventure Move to thus far unvisited locations, preferably toward the goal. 
2 Been There Discourage returning to a location already visited on this trip. 
2 Contract Take large steps when far from the goal, and small steps when close to it. 
2 Cycle Breaker Stop repeated visits to the same few spots.  
2 Done That Discourage moving in the same direction as before from a previously-visited location.  
2 Giant Step If recently confined, take a long step, preferably toward the goal. 
2 Goal Column Align the robot horizontally with the goal, if it is not already. 
2 Goal Row Align the robot vertically with the goal, if it is not already. 
2 Mr. Rogers Move into the neighborhood of the goal. 
2 Plod Take a one-unit step, preferably toward the goal. 

 A base is a location in the maze that appears to have 
beena key to a successful path. In the author’s home town 
people regularly give directions beginning “first you go to 
the Claremont Diner.” Although it served memorable 
cheesecake, the Claremont Diner burned down 15 years ago, 
and there is nothing particularly significant about the car 
dealership that has replaced it. What is significant is that the 
diner was at a location that affords ready (not necessarily 
shortest-path) access to other locations within a 10-mile 
radius. A base is such a location. Bases are learned after 
problem solving from analysis of a successful path that has 
been corrected to eliminate loops and unnecessary 
digressions. A base is an extreme location in that corrected 
path that was not in the heading from the robot to the goal, 
in other words, a counterintuitive move. For example, in 
Figure 1 the move on the solution path from (18, 6) to 
(18, 5) is away from the goal, so (18, 5) would be learned as 
a base. A base is not a dead-end or startG itself, and solution 
fragments constructed during search to circumvent an 
obstruction aligned with the goal contribute only their most 
extreme positions opposite the original headings. Bases are 
stored on a list. 
 Two other items of useful knowledge are learned 
automatically by FORR after problem solving and have no 
particular spatial significance: average task length in 
decisions steps and openings, previously successful path 
beginnings. 

 Pragmatic navigation knowledge is heuristic. No data is 
guaranteed to be correct, or applicable to any other problem. 
The learning algorithm for any item may reference useful 
knowledge or the ideas behind it to distinguish among kinds 
of items. For example, gates are not dead-ends. For the most 
part, however, one location might participate in several 
kinds of items, and thereby be considered by a variety of 
Advisors, without constraint. This means that, for example, 
a gate may also be a base or the neck of a bottle. 

4. Applying pragmatic navigation knowledge 
Ariadne applies acquired pragmatic navigation knowledge 
about a particular maze to solve problems in it. Each of its 
Advisors is a narrow decision-making rationale designed for 
path finding in general, rather than for some particular 
maze. Those Advisors that apply no pragmatic navigation 
knowledge are summarized in Table 1; further details are 
available on them in (Epstein 1995).  
 Tier 1 Advisors are perfectly correct, reactive procedures 
that decide quickly and mandate a single move. No Way is 
the only tier-1 Advisor in Ariadne that applies pragmatic 
navigation knowledge. It checks each legal move to see if it 
resides in the extent of a dead-end that could not contain the 
goal. (Recall that the extent is a bounding rectangle, so this 
is a conservative approach.) If so, No Way eliminates the 
move from further consideration, unless the robot is already 



 
in the dead-end (and therefore needs to get out). 
 Tier 1.5 Advisors are heuristics that do time-limited 
search in an attempt to produce a sequence of moves that 
they then mandate. (These Advisors simulate human, 
situation-based behavior (Klein & Calderwood 1991).) Each 
is defined by its trigger, which signals its applicability, and 
its search method. Ariadne has three that apply useful 
knowledge: Outta Here, Roundabout, Wander, and Super 
Quadro.  
 Outta Here attempts to leave a confined space that does 
not contain the goal. It triggers when the trip is well 
underway and either the robot’s recent locations cover a 
relatively small fraction of the total area of the maze, or it 
believes itself to be in a dead-end or chamber not containing 
the goal. If the robot is in a dead-end, Outta Here marches 

out with a sequence of steps that lead to its open end. If the 
robot is in a chamber, Outta Here scans the way the 
chamber-learning routine does (and may learn a chamber as 
a side effect) before it returns a sequence of up to three steps 
that move the robot out through the access point of the 
chamber. If Outta Here were to trigger in Figure 3 when the 
robot was at (18, 6), it would generate the path (18, 5) → 
(16, 5) → (16, 3). Outta Here is not guaranteed to find an 
access point, and may return the robot to a location it has 
already visited. 
  Roundabout attempts to circumnavigate a wall between 
the robot and the goal. It triggers when the robot is aligned 
with the goal, either horizontally or vertically. This is not a 
traditional wall-following algorithm; it establishes a primary    
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Figure 4: In one maze, (a) a solution path, (b) a simple decision situation, and (c) pragmatic navigation knowledge.

direction (toward the goal) and a secondary direction 
(orthogonal to the primary). Avoiding dead-ends, search 
repeatedly moves in the primary direction when possible, 
otherwise in the secondary direction until the goal is in view 
or backup (permitted opposite to the primary and secondary 
directions) would exceed the original alignment coordinates. 
While time permits, if this search fails to produce a solution 
fragment, the algorithm will iterate after shifting the robot 
one or more steps in either secondary direction. Roundabout 
will proffer the first path that gets closer to the goal, even if 
it is not in sight at the end. In Figure 1 the portion of the 
solution from (5, 10) to (5, 13) was mandated by 
Roundabout. 
 Wander attempts to find an L-shaped path that leads it to 
a new location, one as far from the robot’s current location 
as possible. It triggers only when the robot’s behavior is 
judged constrained and repetitive, and the current location 
was not just the result of a solution fragment. Wandering 
becomes less likely as more bases are identified; its trigger 
is stochastic, with probability  

1 – 
bases

.1unobstructed maze locations

. 

 Super Quadro attempts to change the robot’s quadrant. It 
triggers when the trip is well underway and the robot has 
been in its current quadrant (or its current quadrant and the 

goal’s quadrant) for some time. Super Quadro scans to find 
a move into the extent of a gate that would change the 
robot’s quadrant. It tries to find a sequence of orthogonal 
steps to a location whose quadrant is different, preferably 
the goal quadrant if it has not been there recently. From 
(18, 5) in Figure 3, depending upon its recent experience, 
Super Quadro could generate the path (16, 5) → (16, 3) → 
(10, 3) into the extent of, and through, the (11, 3) gate. 
Super Quadro has no heuristics for preferring one gate to 
another, so its solution fragment may not always be 
constructive. 
 Tier-2 Advisors are reactive, time-limited heuristics that 
embody path-finding commonsense and do no forward 
search in the maze. Each may recommend or oppose any 
number of legal moves that have not already been 
eliminated by No Way. Although every tier-2 Advisor 
captures a reasonable rationale for navigation, none should 
be trusted to decide alone. All 17 vote together. The simple 
ideas behind them support rapid computation; given 10 
seconds, none of Ariadne’s tier-2 Advisors has yet run out 
of time.  
 Opening encourages the reuse of previously successful 
path beginnings. Even if the goal is in a different location, 
its heuristic may work well if the old path was successful 
because it began by moving to an area that offered good 
access to other parts of the maze. Chamberlain discourages 



 
a move into the extent of a chamber if the goal is not there, 
and encourages such a move if the goal might be there. If 

the robot is already in a chamber where the goal is not,  

Table 2: Tier 2 votes on Figure 4(a). 
 
Move Comments Score 
(3, 8) Giant Step 8, Adventure 6 4 
(4, 8) Giant Step 8, Adventure 6 4 
(5, 8)  Adventure 6, Plod 6 2 
(6, 3) Home Run 10, Giant Step 10 10 
(6, 4) Home Run 8, Mr. Rogers 6, Giant Step 10, Adventure 8 12 
(6, 5) Home Run 8, Mr. Rogers 7, Giant Step 10, Adventure 8 13 
(6, 6) Home Run 8, Mr. Rogers 8, Giant Step 10, Adventure 8, Goal Column 10 19 
(6, 7) Mr. Rogers 7, Adventure 8, Plod 8 8 
(7, 8 )  Mr. Rogers 9, Been There 4, Plod 8 6 
(8, 8) Mr. Rogers 10, Giant Step 10, Been There 4 9 
Chamberlain encourages moving to an access point (to 
support a subsequent exit). Cork is the bottle version of 
Chamberlain. When the robot is outside the bottle, it 
discourages moves into the neck of a bottle whose extent 
indicates that it cannot contain the goal, and encourages 
moves into the neck of a bottle whose extent indicates that it 
can contain the goal. When the robot is inside the bottle, 
Cork reverses this advice. Quadro is a simplistic version of 
Super Quadro. It encourages, with decreasing strengths, 
moves to known gates into the goal’s quadrant, moves into 
the extent of a known gate into the goal’s quadrant, moves 
to known gates into another quadrant, and moves into the 
extent of a known gate into another quadrant. Home Run 
encourages moves to bases and, with lesser strengths, moves 
to locations near bases. Leap Frog constructs high-level 
plans as a result of bidirectional search on aligned bases, as 
if there were no obstructions, and supports moves to the 
bases in its plans. Late in a trip (as measured by the average 
task length), Hurry proportionately encourages the moves 
with the five longest steps.  
 Figure 4(a) shows Ariadne’s somewhat torturous solution 
to a level 4 problem during learning in a scaled-down maze. 
Ariadne starts out well, but when unable to move south or 
west toward the goal from (8, 8), it goes to (6, 8). The 
decision situation at (6, 8) is detailed in Figure 4(b). At this 
point, tiers 1 and 1.5 have already waived their right to 
decide on the next move, and (6, 3) is a learned base from a 
previous trip. Ariadne’s actual comments appear in Table 2, 
where the total score for a move is computed by converting 
the comment strength range from [0, 10] to [–5, 5] and then 
adding the strengths. The move to (6, 6) will be selected 
because it is near a base, it gets closer to the goal than some 
of the other moves, it is a relatively long step, it has not yet 
been visited on this trip, and it is in the goal column. Once 
Ariadne moves to (6, 6), Roundabout computes a fragment 
that puts the robot in sight of the goal, and the trip ends as 
Victory moves there. 
 Because of this trip, (8, 9) is learned as a base. The 
problem generator’s solution to Figure 4(a) is  

 (7, 7) → (7, 9) → (10, 9) → (10, 6) → (9, 6).  
Figure 4(a) was Ariadne’s fourth learning trip in this 

particular maze, and it had not yet encountered (8, 9) as a 
base. The next time Ariadne solves the same problem, it 
recognizes (8, 9) as a base, moves there from (8, 8), then 
goes to (9, 9), starts Roundabout, and ultimately produce a 
solution as short as the generator’s path but in smaller steps 
(and therefore more decisions). Figure 4(c) shows Ariadne’s 
useful knowledge about this maze after 10 level-4 learning 
problems in it.  

5. Experimental design and results 
Ariadne’s performance is evaluated in a series of runs. A 
run for a fixed, randomly-generated maze consists of 10 
learning problems given to a program, followed by 10 
testing problems with learning turned off. A problem of 
either kind is terminated when the agent reaches the goal or 
when it has made 100 decisions. Because Ariadne is non-
deterministic, results from 5 runs are averaged to produce an 
experiment. Experiments were performed for problems with 
levels of difficulty 6, 8, 10, and 12 in 20 × 20 mazes that 
were 30% obstructed internally. Effectively, the level of 
difficulty of a problem is the minimum number of (left or 
right) turns the robot must make to reach the goal.  
 Performance during testing is evaluated in a variety of 
ways: the number of test problems solved within the 
decision-step limit n (solutions), the Manhattan distance of a 
successful solution path (path length), elapsed time per trip 
in seconds on a Sun Sparc10 (speed), and the percentage of 
solutions that are at least as short as the one anticipated by 
the problem generator (power).  
 Ariadne solves about 94% of all problems below level 12 
in less than 100 decision steps. Speedup-learning is 
measured by reusing learning problems during testing. In 
recent testing on problems at levels 6, 8, 10, and 12, a non-
parametric sign test showed that speedup paths are 
significantly shorter at the 95% confidence level. Ariadne 
solved 76% of level 12 problems on the first pass, and 86% 
when it resolved them with access to useful knowledge but 
with further learning turned off. On newly-generated testing 
problems, Ariadne solves some with learned pragmatic 
navigation knowledge that it cannot solve without it. With 



 
learned pragmatic knowledge, it also constructs more 
solutions at least as good as the problem generator’s than 
those constructed without pragmatic navigation knowledge 
and does so in less time, again at the 95% confidence level.  

6. Discussion 
In a sufficiently large and complex maze, people and many 
standard search techniques find these problems extremely 
difficult. The branching factor is large when there is enough 
obstruction to make the goal hard to see, but not too much, 
so that there are many choices at each decision point. 
Typical AI search strategies will explore most of the nodes, 
revisiting some of them many times. The robot’s knowledge 
is so limited that search dependent upon an ordinary 
evaluation function is difficult to construct. For example, 
closer to the goal is not necessarily better; there may be a 
very long wall there. Best-first search, with Euclidean 
distance as its evaluation function, solves only 70% of level 
10 problems [Pazzani, personal communication]. Depth-first 
search requires fairly elaborate backtracking and loop 
prevention; very few problems would be solvable with 
depth-first search under the n = 100 step limit imposed here. 
Breadth-first search, while it will always solve the problem, 
does so at the cost of visiting a high proportion of nodes in 
the search space and maintaining a very large structure for 
open paths. Indeed, the data indicate that explicit, breadth-
first search in these mazes is nearly exhaustive (96.2%) for 
level-12 problems. Means-ends analysis is not possible 
because the robot knows little, if anything at all, about the 
immediate vicinity of the goal. For a very large maze, then, 
explicit search with a map would be extremely inefficient, 
perhaps intractable.  
 The thoughtful approach is to learn something about the 
maze on repeated trips through it. Branting and Aha recently 
suggested a case-based planning method for the grid world 
that operated in a set of abstraction spaces and stored both 
detailed and abstracted solution paths (Branting & Aha 
1995). Their mazes, although larger than those tested here, 
are less complex, since they assume that obstructions are 
rectangular objects. Such a maze is unlikely to present many 
dead-ends, narrow-necked chambers or bottles, or effective 
barriers between large regions. We would expect Ariadne to 
perform quite well without learning in those mazes. 
Alternatively, a variety of reinforcement learning techniques 
have sought convergence to an optimal path through 
repeated solution of a single problem, and obtained it after 
hundreds of thousands of repetitions [Moore and Atkeson, 
1993; Sutton, 1990]. In contrast, Ariadne has no mechanism 
that would guarantee optimality, and will quickly settle 
upon the same route in most cases. 
 Pragmatic navigation proves to be a robust alternative. A 
single of item of pragmatic navigation knowledge can be 
applied differently by different Advisors, even within the 
same tier. For example, bases were conceived of as 
touchstones, intended for Home Run as a way to guide a 
single reactive decision. When simple planning was 

implemented in Leap Frog, bases were harnessed for that as 
well. 
 The application of pragmatic navigation knowledge, 
however, benefits from an empirical component. Leap Frog, 
for example, assumes orthogonally-aligned bases will have 
no intervening obstructions, and then builds a set of plans 
bridging the gap between startR and startG with a sequence 
of bases. Initially it was unclear whether these plans should 
be high-level (take the most distant aligned base from the 
search node) or low-level (take the nearest aligned base to 
the search node). During testing, low-level plans were 
clearly superior. 
 Although Ariadne draws no explicit map, one might fear 
that the amount of useful knowledge would eventually 
approach the amount required for a map. This does not 
appear to be the case. Apart from gates, there is no 
connectivity knowledge in pragmatic navigation. (In Figure 
4(a) with 70 locations, however, there are 174 adjacencies.) 
In a particular maze there are not so many corridors, 
chambers, bottles, and gates to be discovered. Bases, which 
we believe to be Ariadne’s most powerful item of useful 
knowledge, are a form of distinguished location. Although 
they may cluster together, bases tend to repeat, both because 
of maze topology and because they are learned from new 
solutions, which rely on old bases. Travel in a difficult 
problem almost always entails visits to both bases and non-
bases, but to date bases have never exceeded 21% of the 
reachable locations, even after repeated learning in the same 
maze. 
 Based on preliminary empirical evidence, there is every 
reason to believe that Ariadne will scale up, i.e., that it will 
continue to perform well in much larger and more tortuous 
mazes than these. Hoyle, a FORR-based game-learning 
program, progressed from expertise in spaces with several 
thousand nodes to spaces with several billion nodes after the 
addition of only a few tier-2 Advisors (Epstein 1992). 
Ariadne has already performed well on preliminary tests in 
30 × 30 mazes and continues to improve as we refine its 
Advisors and its learning algorithms.  
 Even if one could identify all the relevant useful 
knowledge for pragmatic navigation, there is no obvious 
way to integrate it properly. For example, it is our intuition 
that bases are much more helpful than chambers, so that 
when they disagree, the comments of Leap Frog and Home 
Run should be valued more than those of Chamberlain. In 
some mazes, however, the relative significance of Advisors 
differs because the topology of the maze makes one 
approach consistently (on a variety of problems) more 
successful than another. AWL is an algorithm that learns 
weights for second-tier Advisors [Epstein, 1994b]. It was 
devised to exploit empirical evidence that the accuracy of 
second-tier Advisors varies with the problem class. AWL 
learns weights to apply to comment strengths, so that voting 
results from Hoyle’s Advisors match the way Hoyle’s 
external exponent played, i.e., AWL fits Hoyle to the expert. 
In Ariadne, of course, there is no external expert, but there 
are procedures that smooth and eliminate repetitions from 
successful paths after a trip is over, without search. We are 



 
now testing AWL to fit Ariadne’s voting to these improved 
paths, and expect improvement. 
 This work has several similarities to the way people 
describe routes in urban and suburban Paris (Gryl 1994a; 
Gryl 1994b; Ligozat 1992). In particular, the data indicate 
that when people select routes they do not change direction 
a lot, move initially toward their goal, prefer main axes, and 
tend to avoid neighborhoods with limited access. Ariadne 
does not change direction a lot, either, because it has 
Advisors like Giant Step and Hurry with a propensity for 
long, one-directional steps. Plod, Mr. Rogers, and Giant 
Step all move the robot toward the goal, too, particularly 
early in a trip. Cork and Chamberlain deal in a human-like 
manner with the constricted neighborhoods of bottles and 
chambers. Finally, Ariadne’s “vision” in only four 
directions permits only movement along the north-south and 
east-west axes. 
 Ariadne is ongoing work. There are still many proposed 
Advisors and items of useful knowledge on the drawing 
board. More elaborate planning is a central focus, as is a 
variety of training methods. Meanwhile the program’s 
efficient and successful performance argues for navigation 
based on spatial representation of useful knowledge rather 
than detailed maps. 
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